ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 36995  (#1)

Темы:   [ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 9,10

В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС.

Прислать комментарий     Решение

Задача 36996  (#2)

Темы:   [ Построение треугольников по различным элементам ]
[ Окружность Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Гомотетия (ГМТ) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.

Прислать комментарий     Решение

Задача 36997  (#3)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

Дан квадрат ABCD. Найдите геометрическое место точек M таких, что ∠AMB = ∠CMD.

Прислать комментарий     Решение

Задача 36998  (#4)

Темы:   [ Теорема синусов ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4+
Классы: 9,10

Треугольник ABC вписан в окружность. Через точки A и B проведены касательные к этой окружности, которые пересекаются в точке P. Точки X и Y — ортогональные проекции точки P на прямые AC и BC. Докажите, что прямая XY перпендикулярна медиане треугольника ABC, проведенной из вершины C.

Прислать комментарий     Решение

Задача 36999  (#5)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 5
Классы: 9,10

Автор: Панов М.Ю.

Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .