ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

В окружность Ω вписан остроугольный треугольник ABC, в котором  AB > BC.  Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.

Вниз   Решение


На сторонах остроугольного треугольника ABC взяты точки A1, B1, C1 так, что отрезки AA1, BB1, CC1 пересекаются в точке H.
Докажите, что  AH·A1H = BH·B1H = CH·C1H  тогда и только тогда, когда H – точка пересечения высот треугольника ABC.

ВверхВниз   Решение


а) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 – на другой. Докажите, что если  AB1 || BA1  и  AC1 || CA1,  то  BC1 || CB1.

б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что  AB1 || BA1AC1 || CA1  и  BC1 || CB1.
Докажите, что точки A1, B1 и C1 лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 56462

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Задача 56467

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Проективная геометрия (прочее) ]
Сложность: 3+
Классы: 8,9

а) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 – на другой. Докажите, что если  AB1 || BA1  и  AC1 || CA1,  то  BC1 || CB1.

б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что  AB1 || BA1AC1 || CA1  и  BC1 || CB1.
Докажите, что точки A1, B1 и C1 лежат на одной прямой.

Прислать комментарий     Решение

Задача 56468

Темы:   [ Биссектриса угла (ГМТ) ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1.
Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 56469

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Пусть M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC. Докажите, что  ∠QNM = ∠MNP.

Прислать комментарий     Решение

Задача 56470

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9

На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если  KM = NL,  то  KO = PL.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .