ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность S1 с диаметром AB пересекает окружность S2 с центром A в точках C и D. Через точку B проведена прямая, пересекающая S2 в точке M, лежащей внутри S1, а S1 в точке N. Докажите, что  MN2 = CN . ND.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 104]      



Задача 56601  (#02.058)

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

а) Стороны угла с вершиной C касаются окружности в точках A и B. Из точки P, лежащей на окружности, опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA и AB. Докажите, что  PC12 = PA1 . PB1 и PA1 : PB1 = PB2 : PA2.
б) Из произвольной точки O вписанной окружности треугольника ABC опущены перпендикуляры  OA', OB', OC' на стороны треугольника ABC и перпендикуляры  OA'', OB'', OC'' на стороны треугольника с вершинами в точках касания. Докажите, что  OA' . OB' . OC' = OA'' . OB'' . OC''.
Прислать комментарий     Решение


Задача 52408  (#02.059)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пятиугольники ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные многоугольники ]
Сложность: 4-
Классы: 8,9,10

Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.

Прислать комментарий     Решение

Задача 56603  (#02.060)

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены высоты AA1, BB1 и CC1B2 и C2 — середины высоты BB1 и CC1. Докажите, что  $ \triangle$A1B2C2 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 56604  (#02.061)

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

На высотах треугольника ABC взяты точки A1, B1 и C1, делящие их в отношении 2 : 1, считая от вершины. Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 56605  (#02.062)

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5
Классы: 8,9

Окружность S1 с диаметром AB пересекает окружность S2 с центром A в точках C и D. Через точку B проведена прямая, пересекающая S2 в точке M, лежащей внутри S1, а S1 в точке N. Докажите, что  MN2 = CN . ND.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .