Версия для печати
Убрать все задачи
а) Докажите, что если
A,
B,
C и
D — произвольные точки плоскости, то
AB . CD +
BC . AD
AC . BD (
неравенство Птолемея).
б) Докажите, что если
A1,
A2, ...
A6 — произвольные точки
плоскости, то
в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда
и только тогда, когда
ABCD — (выпуклый) вписанный четырехугольник.
г) Докажите, что неравенство из задачи б) обращается в равенство тогда и
только тогда, когда
A1...
A6 — вписанный шестиугольник.

Решение
Докажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным
преобразованием можно перевести в четырехугольник, у которого противоположные
углы прямые.

Решение