ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 29. Аффинные преобразования
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В параллелограмме ABCD точки A1, B1, C1, D1 лежат соответственно на сторонах AB, BC, CD, DA. На сторонах A1B1, B1C1, C1D1, D1A1 четырехугольника A1B1C1D1 взяты соответственно точки A2, B2, C2, D2. Известно, что
= = = = = = = .
Докажите, что A2B2C2D2 — параллелограмм со сторонами, параллельными сторонам ABCD. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]
а) O — точка пересечения медиан треугольника MNP; б) O — точка пересечения медиан треугольника, образованного прямыми AN, BP и CM.
= = = = = = = .
Докажите, что A2B2C2D2 — параллелограмм со сторонами, параллельными сторонам ABCD.
а) если точки M1, N1 и P1 симметричны точкам M, N и P относительно середин соответствующих сторон, то SMNP = SM1N1P1. б) если M1, N1 и P1 — такие точки сторон AC, BA и CB, что MM1| BC, NN1| CA и PP1| AB, то SMNP = SM1N1P1.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|