ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

(Для знакомых с основами алгебры) Дано целое гауссово число n + mi (принадлежащее  $ \mathbb {Z}$[i]).

(a) Проверить, является ли оно простым (в  $ \mathbb {Z}$[i]).

(б) Напечатать его разложение на простые (в  $ \mathbb {Z}$[i]) множители.

Вниз   Решение


Даны многочлены P1, P2, ... , P5, имеющие суммы коэффициентов, равные 1, 2, 3, 4, 5 соответственно.
Найдите сумму коэффициентов многочлена  Q = P1P2...P5.

ВверхВниз   Решение


Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.

ВверхВниз   Решение


В клетки таблицы 8×8 записаны числа 1 и –1 так, что в каждой строке, в каждом столбце и на каждой диагонали (в частности, в угловых клетках) произведения чисел равны 1. Какое максимальное число минус единиц при этом возможно?

ВверхВниз   Решение


Докажите, что для любого нечетного n$ \ge$3 на плоскости можно указать 2n различных точек, не лежащих на одной прямой, и разбить их на пары так, чтобы любая прямая, проходящая через две точки из разных пар, проходила бы еще через одну из этих 2n точек.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]      



Задача 58439  (#30.032)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Даны четырехугольник ABCD и прямая l. Обозначим через P, Q, R точки пересечения прямых AB и CD, AC и BD, BC и AD, а через P1, Q1, R1 — середины отрезков, которые эти пары прямых высекают на прямой l. Докажите, что прямые PP1, QQ1 и RR1 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 58440  (#30.033)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Даны треугольник ABC и прямая l. Обозначим через A1, B1, C1 середины отрезков, высекаемых на прямой l углами A, B, C, а через A2, B2, C2 — точки пересечения прямых AA1 и BC, BB1 и AC, CC1 и AB. Докажите, что точки A2, B2, C2 лежат на одной прямой.
Прислать комментарий     Решение


Задача 58441  (#30.034)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Даны четыре точки A, B, C, D. Пусть P, Q, R — точки пересечения прямых AB и CD, AD и BC, AC и BD соответственно; K и L — точки пересечения прямой QR с прямыми AB и CD соответственно. Докажите, что (QRKL) = - 1 (теорема о полном четырехстороннике).
Прислать комментарий     Решение


Задача 58442  (#30.034.1)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Окружность пересекает прямые BC, CA, AB в точках A1 и A2, B1 и B2, C1 и C2. Пусть la — прямая, соединяющая точки пересечения прямых BB1 и CC2, BB2 и CC1; прямые lb и lc определяются аналогично. Докажите, что прямые la, lb и lc пересекаются в одной точке (или параллельны).
Прислать комментарий     Решение


Задача 58443  (#30.035)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 7
Классы: 10,11

Докажите, что для любого нечетного n$ \ge$3 на плоскости можно указать 2n различных точек, не лежащих на одной прямой, и разбить их на пары так, чтобы любая прямая, проходящая через две точки из разных пар, проходила бы еще через одну из этих 2n точек.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .