ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 31. Эллипс, парабола, гипербола
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите, что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB пересекаются в одной точке (Штейнер). б) Пусть точки A, B, C, D, E и F лежат на одной окружности. Докажите, что тогда прямые Паскаля шестиугольников ABFDCE, AEFBDC и ABDFEC пересекаются в одной точке (Киркман). Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 84]
f = lABlCD + lBClAD,
где и — некоторые числа.
б) Пусть точки A, B, C, D, E и F лежат на одной окружности. Докажите, что тогда прямые Паскаля шестиугольников ABFDCE, AEFBDC и ABDFEC пересекаются в одной точке (Киркман).
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 84] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|