ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть стороны самопересекающихся четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность, пересекают хорду AB этой окружности в точках P, Q, R, S и P', Q', R', S' соответственно (сторона KL — в точке P, LM — в точке Q, и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с соответственными тремя из точек P', Q', R', S', то и оставшиеся две точки тоже совпадают. (Предполагается, что хорда AB не проходит через вершины четырехугольников.)

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 84]      



Задача 58518  (#31.051)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Пусть точки A, B, C и D лежат на конике, заданной уравнением второй степени f = 0. Докажите, что

f = $\displaystyle \lambda$lABlCD + $\displaystyle \mu$lBClAD,

где $ \lambda$ и $ \mu$ — некоторые числа.
Прислать комментарий     Решение

Задача 58519  (#31.052)

Темы:   [ Кривые второго порядка ]
[ Алгебраические кривые ]
[ Шестиугольники ]
Сложность: 5-
Классы: 10,11

Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых AB и DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).
Прислать комментарий     Решение


Задача 58520  (#31.053)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите, что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB пересекаются в одной точке (Штейнер).
б) Пусть точки A, B, C, D, E и F лежат на одной окружности. Докажите, что тогда прямые Паскаля шестиугольников ABFDCE, AEFBDC и ABDFEC пересекаются в одной точке (Киркман).
Прислать комментарий     Решение


Задача 58521  (#31.054)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Пусть хорды KL и MN проходят через середину O хорды AB. Докажите, что прямые KN и ML пересекают прямую AB в точках, равноудаленных от точки O.
Прислать комментарий     Решение


Задача 58522  (#31.055)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Пусть стороны самопересекающихся четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность, пересекают хорду AB этой окружности в точках P, Q, R, S и P', Q', R', S' соответственно (сторона KL — в точке P, LM — в точке Q, и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с соответственными тремя из точек P', Q', R', S', то и оставшиеся две точки тоже совпадают. (Предполагается, что хорда AB не проходит через вершины четырехугольников.)
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .