ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

Вниз   Решение


Докажите, что периметр остроугольного треугольника не меньше 4R.

ВверхВниз   Решение


Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

ВверхВниз   Решение


Докажите, что числа Каталана удовлетворяют рекуррентному соотношению   Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0.
Определение чисел Каталана Cn смотри в справочнике.

ВверхВниз   Решение


Найдите уравнение гиперболы Киперта: а) в трилинейных координатах; б) в барицентрических координатах.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 58548  (#31.081)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Найдите уравнение гиперболы Киперта: а) в трилинейных координатах; б) в барицентрических координатах.
Прислать комментарий     Решение


Задача 58549  (#31.082)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

На сторонах AB, BC и CA треугольника ABC построены равнобедренные треугольники AC1B, BA1C, AB1C с углом при основании $ \varphi$ (все три внешним или внутренним образом одновременно). Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке, лежащей на гиперболе Киперта.
Замечание. На гиперболе Киперта лежат следующие точки: ортоцентр ( $ \varphi$ = $ \pi$/2), центр масс ( $ \varphi$ = 0), точки Торричелли ( $ \varphi$ = ±$ \pi$/3), вершины треугольника ( $ \varphi$ = - $ \alpha$, - $ \beta$, - $ \gamma$).
Прислать комментарий     Решение


Задача 58550  (#31.083)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Найдите уравнение центра гиперболы Киперта: а) в трилинейных координатах; б) в барицентрических координатах.
Прислать комментарий     Решение


Задача 86086  (#31.084)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Найдите уравнение гиперболы Енжабика в трилинейных коордитнатах.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .