ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите справедливость формулы  

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1255]      



Задача 60384  (#02.050)

 [Ключи от сейфа]
Темы:   [ Сочетания и размещения ]
[ Криптография ]
Сложность: 3+
Классы: 8,9

Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии?

Прислать комментарий     Решение

Задача 60385  (#02.051)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 8

У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?

Прислать комментарий     Решение

Задача 60388  (#02.054)

 [Бином Ньютона]
Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 8,9,10,11

Докажите справедливость формулы  

Прислать комментарий     Решение

Задача 60389  (#02.055)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 9,10,11

Сколько рациональных слагаемых содержится в разложении

а) ( + )100;

б) ( + )300?

Прислать комментарий     Решение

Задача 60390  (#02.056)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .