ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

а) В треугольнике ABC проведены высоты AA1, BB1 и CC1. Прямые AB и A1B1BC и B1C1CA и C1A1 пересекаются в точках C', A' и B'. Докажите, что точки A', B' и C' лежат на радикальной оси окружности девяти точек и описанной окружности.
б) Биссектрисы внешних углов треугольника ABC пересекают продолжения противоположных сторон в точках A', B' и C'. Докажите, что точки A', B' и C' лежат на одной прямой, причем эта прямая перпендикулярна прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.

Вниз   Решение


Пусть числа x1, x2, ..., xr образуют приведённую систему вычетов по модулю m.
Для каких a и b числа  yj = axj + b  (j = 1, ..., r)  также образуют приведённую систему вычетов по модулю m?

ВверхВниз   Решение


Пусть  (m, n) = 1,  а числа x и y пробегают приведённые системы вычетов по модулям m и n соответственно. Докажите, что число  A = xn + ym  пробегает при этом приведённую систему вычетов по модулю mn. Выведите отсюда мультипликативность функции Эйлера (см. задачу 60760).

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 55]      



Задача 60759  (#04.133)

Тема:   [ Функция Эйлера ]
Сложность: 3
Классы: 9,10,11

Чему равна сумма  φ(1) + φ(p) + φ(p2) + ... + φ(pα),  где α #8211; некоторое натуральное число?

Прислать комментарий     Решение

Задача 60760  (#04.134)

Темы:   [ Функция Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10,11

Функция Эйлера  φ(n)  определяется как количество чисел от 1 до n, взаимно простых с n.
Основным свойством функции Эйлера является её мультипликативность.
Для взаимно простых a и b рассмотрим таблицу

В каких столбцах этой таблицы находятся числа взаимно простые с числом b?
Сколько в каждом из этих столбцов чисел взаимно простых с a?
Докажите мультипликативность функции Эйлера, ответив на эти вопросы.

Прислать комментарий     Решение

Задача 60761  (#04.135)

Темы:   [ Арифметика остатков (прочее) ]
[ Функция Эйлера ]
Сложность: 3
Классы: 9,10,11

Сколько классов составляют приведённую систему вычетов по модулю m?

Прислать комментарий     Решение

Задача 60762  (#04.136)

Темы:   [ Арифметика остатков (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 9,10,11

Пусть числа x1, x2, ..., xr образуют приведённую систему вычетов по модулю m.
Для каких a и b числа  yj = axj + b  (j = 1, ..., r)  также образуют приведённую систему вычетов по модулю m?

Прислать комментарий     Решение

Задача 60763  (#04.137)

Темы:   [ Арифметика остатков (прочее) ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 9,10,11

Пусть  (m, n) = 1,  а числа x и y пробегают приведённые системы вычетов по модулям m и n соответственно. Докажите, что число  A = xn + ym  пробегает при этом приведённую систему вычетов по модулю mn. Выведите отсюда мультипликативность функции Эйлера (см. задачу 60760).

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .