ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какие множества на комплексной плоскости описываются следующими условиями:
  а)  |z| ≤ 1;   б)  |z – i| ≤ 1;   в)  |z| = z;   г)     д)  arg = π/4;   е)  Re z2 ≤ 1;   ж)  | iz + 1| = 3;   з)  |z – i| + |z + i| = 2;   и)   Im 1/z < –½   к)  π/6 < arg (z – i) < π/4.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



Задача 61070  (#07.006)

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 9,10,11

Какие множества на комплексной плоскости описываются следующими условиями:
  а)  |z| ≤ 1;   б)  |z – i| ≤ 1;   в)  |z| = z;   г)     д)  arg = π/4;   е)  Re z2 ≤ 1;   ж)  | iz + 1| = 3;   з)  |z – i| + |z + i| = 2;   и)   Im 1/z < –½   к)  π/6 < arg (z – i) < π/4.

Прислать комментарий     Решение

Задача 61071  (#07.007)

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 9,10,11

Найдите  min |3 + 2i – z|  при  |z| ≤ 1.

Прислать комментарий     Решение

Задача 61072  (#07.008)

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 9,10,11

Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
  а) полуплоскость, расположенная строго левее мнимой оси;
  б) первый квадрант, не включая координатных осей;
  в) множество точек, отстоящих от мнимой оси на расстояние, меньшее 2;
  г) полукруг радиуса 1 (без полуокружности) с центром в точке O, расположенный не выше действительной оси.

Прислать комментарий     Решение

Задача 61073  (#07.009)

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 9,10,11

Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию  |z – 1 – i| = 2|z + 1 – i|.

Прислать комментарий     Решение

Задача 61074  (#07.010)

 [Окружность Аполлония]
Темы:   [ Геометрия комплексной плоскости ]
[ Окружность Ферма-Аполлония ]
Сложность: 3+
Классы: 9,10,11

Докажите, что на комплексной плоскости равенством  |z – a| = k|z – b|  при  k ≠ 1  задается окружность (a и b  – действительные числа).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .