ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Метод Ньютона (см. задачу 9.77) не всегда позволяет приблизиться к корню уравнения f (x) = 0. Для многочлена f (x) = x(x - 1)(x + 1) найдите начальное условие x0 такое, что f (x0) ![]() |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]
Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 имеет корни x1, x2, ..., xn, причем |x1| > |x2| > ... > |xn|. В задаче 60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа а) б)
Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |