ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие. ![]() ![]() Докажите, что сумма внешних углов любого многоугольника, прилегающих к меньшим 180o внутренним углам, не меньше 360o. ![]() ![]() ![]() Спортпрогноз. Предположим, что ожидается баскетбольный матч между двумя командами A и B, в котором возможно только два исхода: одна из команд выигрывает. Две букмекерские конторы принимают ставки с разными коэффициентами kA(1), kB(1), kA(2), kB(2). Например, если игрок сделал ставку N в первой конторе на команду A, и эта команда выиграла, то игрок получает сумму kA(1) . N. Пусть
kA(1) = 2, kB(1) =
Как, имея капитал N, распорядиться им оптимальным образом, то
есть как сделать ставки в двух конторах, чтобы получить
максимальный гарантированный выигрыш?
Проанализируйте случай произвольных коэффициентов kA(1), kB(1), kA(2), kB(2) и найдите связь между максимальным гарантированным выигрышем и средним гармоническим наибольших коэффициентов. ![]() ![]() |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 76]
Выведите из неравенства задачи 61401 а) неравенство Коши-Буняковского: б) неравенство между средним арифметическим и средним
квадратичным: в) неравенство между средним арифметическим и средним
гармоническим:
Докажите неравенство:
Используя результат задачи 61403, докажите неравенства:
в)
kA(1) = 2, kB(1) =
Как, имея капитал N, распорядиться им оптимальным образом, то
есть как сделать ставки в двух конторах, чтобы получить
максимальный гарантированный выигрыш?
Проанализируйте случай произвольных коэффициентов kA(1), kB(1), kA(2), kB(2) и найдите связь между максимальным гарантированным выигрышем и средним гармоническим наибольших коэффициентов.
f
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 76] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |