ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На квадратном столе лежит квадратная скатерть так, что ни один угол стола не закрыт, но с каждой стороны стола свисает треугольный кусок скатерти. Известно, что какие-то два соседних куска равны. Докажите, что и два других куска тоже равны. (Скатерть нигде не накладывается сама на себя, её размеры могут отличаться от размеров стола.)

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 64651  (#1)

Темы:   [ Текстовые задачи (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9

Дед Мороз раздал детям 47 шоколадок так, что каждая девочка получила на одну шоколадку больше, чем каждый мальчик. Затем дед Мороз раздал тем же детям 74 мармеладки так, что каждый мальчик получил на одну мармеладку больше, чем каждая девочка. Сколько всего было детей?

Прислать комментарий     Решение

Задача 64652  (#2)

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

На клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть?

Прислать комментарий     Решение

Задача 64653  (#3)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Отношения линейных элементов подобных треугольников ]
[ Ортогональная (прямоугольная) проекция ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На квадратном столе лежит квадратная скатерть так, что ни один угол стола не закрыт, но с каждой стороны стола свисает треугольный кусок скатерти. Известно, что какие-то два соседних куска равны. Докажите, что и два других куска тоже равны. (Скатерть нигде не накладывается сама на себя, её размеры могут отличаться от размеров стола.)

Прислать комментарий     Решение

Задача 64654  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 8,9

Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по натуральному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?

Прислать комментарий     Решение


Задача 64722  (#5)

Темы:   [ Обход графов ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Пахарев А.

Дано несколько белых и несколько чёрных точек. Из каждой белой точки идет стрелка в каждую чёрную, на каждой стрелке написано натуральное число. Известно, что если пройти по любому замкнутому маршруту, то произведение чисел на стрелках, идущих по направлению движения, равно произведению чисел на стрелках, идущих против направления движения. Обязательно ли можно поставить в каждой точке натуральное число так, чтобы число на каждой стрелке равнялось произведению чисел на её концах?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .