ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

Вниз   Решение


Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?

ВверхВниз   Решение


Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

ВверхВниз   Решение


По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.
Докажите, что хотя бы одно из этих чисел делится на 3.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 64761  (#9.1)

Темы:   [ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.
Докажите, что хотя бы одно из этих чисел делится на 3.

Прислать комментарий     Решение

Задача 64769  (#10.1)

Темы:   [ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число хорошим, если среди его делителей есть ровно два простых числа.
Могут ли 18 подряд идущих натуральных чисел быть хорошими?

Прислать комментарий     Решение

Задача 64777  (#11.1)

Темы:   [ Тригонометрические неравенства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Существует ли такое положительное число α, что при всех действительных x верно неравенство   |cos x| + |cos αx| > sin x + sin αx?

Прислать комментарий     Решение

Задача 64762  (#9.2)

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа:  a,  a + 2,  b и  b + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

Прислать комментарий     Решение

Задача 64770  (#10.2)

Темы:   [ Монотонность, ограниченность ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что  x > y,  верно неравенство  (f(x))² ≤ f(y).  Докажите, что множество значений функции содержится в промежутке  [0,1].

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .