ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 820]
Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)
Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.
Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?
В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что ∠A = 2∠B тогда и только тогда, когда AC = 2MD.
Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 820] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|