Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник ABC. Прямая, параллельная AC, пересекает стороны AB и BC в точках P и T соответственно, а медиану AM – в точке Q. Известно, что PQ = 3, а QT = 5. Найдите длину AC.
|
|
Сложность: 3+ Классы: 9,10
|
Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?
|
|
Сложность: 3+ Классы: 8,9,10
|
Четырёхугольник ABCD – вписанный. На его диагоналях AC и BD отметили точки K и L соответственно так, что AK = AB и DL = DC.
Докажите, что прямые KL и AD параллельны.
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и
попарно равны.
|
|
Сложность: 3+ Классы: 9,10,11
|
Каждый день, с понедельника по пятницу, ходил старик к синему морю и закидывал в море невод. При этом каждый день в невод попадалось не больше рыбы, чем в предыдущий. Всего за пять дней старик поймал ровно 100 рыбок. Какое наименьшее суммарное количество рыбок он мог поймать за три дня – понедельник, среду и пятницу?
Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]