ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1703]      



Задача 65553

Тема:   [ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 10,11

Даны два многочлена P(x) и Q(x) положительной степени, причём  P(P(x)) ≡ Q(Q(x))  и  P(P(P(x))) ≡ Q(Q(Q(x))).
Обязательно ли тогда  P(x) ≡ Q(x)?

Прислать комментарий     Решение

Задача 65555

Темы:   [ Треугольники (прочее) ]
[ Рациональные и иррациональные числа ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Прислать комментарий     Решение

Задача 65556

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

Прислать комментарий     Решение

Задача 65562

Тема:   [ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

Функции  f и g определены на всей числовой прямой и взаимно обратны. Известно, что  f представляется в виде суммы линейной и периодической функций:  f(x) = kx + h(x),  где k – число, h – периодическая функция. Доказать, что g также представляется в таком виде.

Прислать комментарий     Решение

Задача 65563

Тема:   [ Теория игр (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Марачёв А.

Двое играют в следующую игру. Есть кучка камней. Первый каждым своим ходом берет 1 или 10 камней. Второй каждым своим ходом берёт m или n камней. Ходят по очереди, начинает первый. Тот, кто не может сделать ход, проигрывает. Известно, что при любом начальном количестве камней первый всегда может играть так, чтобы выиграть (при любой игре второго). Какими могут быть m и n?

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .