ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 65567  (#1)

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Автор: Калинин А.

Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?

Прислать комментарий     Решение

Задача 65568  (#2)

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.

Прислать комментарий     Решение

Задача 65569  (#3)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

На первой горизонтали шахматной доски стоят 8 чёрных ферзей, а на последней – 8 белых ферзей. За какое минимальное число ходов белые ферзи могут обменяться местами с чёрными? Ходят белые и чёрные по очереди, по одному ферзю за ход.

Прислать комментарий     Решение

Задача 65570  (#4)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Отношения линейных элементов подобных треугольников ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

Прислать комментарий     Решение

Задача 65571  (#5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 8,9,10,11

В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .