Страница: 1 [Всего задач: 5]
Задача
65567
(#1)
|
|
Сложность: 3+ Классы: 8,9
|
Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?
Задача
65568
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.
Задача
65569
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
На первой горизонтали шахматной доски стоят 8 чёрных ферзей, а на последней – 8 белых ферзей. За какое минимальное число ходов белые ферзи могут обменяться местами с чёрными? Ходят белые и чёрные по очереди, по одному ферзю за ход.
Задача
65570
(#4)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.
Задача
65571
(#5)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад?
Страница: 1 [Всего задач: 5]