ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Задача 65822

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

Прислать комментарий     Решение

Задача 65823

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Палиндром – это натуральное число, которое читается одинаково слева направо и справа налево (например, 1, 343 и 2002 палиндромы).
Найдутся ли 2005 пар вида  (n, n + 110),  где оба числа – палиндромы?

Прислать комментарий     Решение

Задача 65830

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

При каких натуральных  n > 1  найдутся такие различные натуральные числа a1, a2, ..., an, что сумма   a1/a2 + a2/a3 + an/a1   – целое число?

Прислать комментарий     Решение

Задача 65836

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к стороне AB пересекает прямую AC в точке N. Серединный перпендикуляр к стороне AC пересекает прямую AB в точке M. Докажите, что  CB = MN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .