ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  В остроугольном треугольнике ABC проведены высоты AD и CE. Точки M и N – основания перпендикуляров, опущенных на прямую DE из точек A и C соответственно. Докажите, что  ME = DN.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 65902

Темы:   [ Математическая логика (прочее) ]
[ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 7,8

В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?

Прислать комментарий     Решение

Задача 65905

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

В зоопарке есть 10 слонов и огромные чашечные весы. Известно, что если любые четыре слона встанут на левую чашу весов, а любые три – на правую, то левая чаша перевесит. Пять слонов встали на левую чашу и четыре – на правую. Обязательно ли левая чаша перевесит?

Прислать комментарий     Решение

Задача 65906

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты.
Какое наибольшее количество чисел может быть записано?

Прислать комментарий     Решение

Задача 65907

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9,10

  В остроугольном треугольнике ABC проведены высоты AD и CE. Точки M и N – основания перпендикуляров, опущенных на прямую DE из точек A и C соответственно. Докажите, что  ME = DN.

Прислать комментарий     Решение

Задача 65908

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Иррациональные неравенства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10

Что больше:     или  

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .