Страница: 1 [Всего задач: 5]
Задача
65894
(#7.1)
|
|
Сложность: 3 Классы: 6,7
|
Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным: 2016 + 2016 + 2016 + 2016 + 2016 = 46368.
Задача
65895
(#7.2)
|
|
Сложность: 3+ Классы: 6,7
|
Вчера Никита купил несколько ручек: чёрные – по 9 рублей за штуку и синие – по 4 рубля за штуку. Зайдя сегодня в тот же магазин, он обнаружил, что цены на ручки изменились: чёрные стали стоить 4 рубля за штуку, а синие – 9 рублей. Увидев такое, Никита сказал с досадой: "Покупай я те же ручки сегодня, сэкономил бы 49 рублей". Не ошибается ли он?
Задача
65896
(#7.3)
|
|
Сложность: 3+ Классы: 6,7
|
На координатной прямой отмечено несколько точек (больше двух). Каждая точка, кроме двух крайних, находится ровно посередине между какими-то двумя отмеченными. Могут ли все отрезки, внутри которых нет отмеченных точек, иметь различные длины?
Задача
65897
(#7.4)
|
|
Сложность: 3+ Классы: 6,7
|
В трёх клетках таблицы 3×3 стоят числа (см. рисунок). Требуется заполнить числами остальные клетки так, чтобы во всех строках, столбцах и главных диагоналях суммы чисел оказались равными. Докажите, что это можно сделать единственным способом, и заполните таблицу.
Задача
65898
(#7.5)
|
|
Сложность: 3+ Классы: 6,7
|
Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?
Страница: 1 [Всего задач: 5]