Страница: 1
2 >> [Всего задач: 6]
Задача
65911
(#10.1)
|
|
Сложность: 3 Классы: 10,11
|
На листе бумаги построили параболу – график функции y = ax² + bx + c при a > 0, b > 0 и c < 0, – а оси координат стёрли (см. рис.).
Как они могли располагаться?
Задача
65912
(#10.2)
|
|
Сложность: 3 Классы: 10,11
|
Сумма двух целых чисел равна S. Маша умножила левое число на целое число a, правое – на целое число b, сложила эти произведения и обнаружила, что полученная сумма делится на S. Алёша, наоборот, левое число умножил на b, а правое – на a. Докажите, что и у него аналогичная сумма разделится на S.
Задача
65913
(#10.3)
|
|
Сложность: 3+ Классы: 10,11
|
В зоопарке есть 10 слонов и огромные чашечные весы. Известно, что если любые четыре слона встанут на левую чашу и любые три из оставшихся – на правую, левая чаша перевесит. Три слона встали на левую чашу и два – на правую. Обязательно ли левая чаша перевесит?
Задача
65914
(#10.4)
|
|
Сложность: 3+ Классы: 10,11
|
Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n.
Задача
65915
(#10.5)
|
|
Сложность: 3+ Классы: 10,11
|
Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?
Страница: 1
2 >> [Всего задач: 6]