ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66467  (#2)

Тема:   [ Последовательности (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В строку выписано 39 чисел, не равных нулю. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? (Укажите все варианты и докажите, что других нет.)
Прислать комментарий     Решение


Задача 66473  (#2)

Темы:   [ Площадь (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?
Прислать комментарий     Решение


Задача 66479  (#2)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?
Прислать комментарий     Решение


Задача 66485  (#2)

Тема:   [ Равносоставленные фигуры ]
Сложность: 4
Классы: 8,9,10,11

Имеются одна треугольная и одна четырёхугольная пирамиды, все рёбра которых равны 1. Покажите, как разрезать их на несколько частей и склеить из этих частей куб (без пустот и щелей, все части должны использоваться).
Прислать комментарий     Решение


Задача 66491  (#2)

Тема:   [ Замощения костями домино и плитками ]
Сложность: 4
Классы: 8,9,10,11

На доску $2018\times 2018$ клеток положили без наложений некоторое количество доминошек, каждая из которых закрывает ровно две клетки. Оказалось, что ни у каких двух доминошек нет общей целой стороны, т. е. никакие две не образуют ни квадрат $2\times 2$, ни прямоугольник $4\times 1$. Может ли при этом быть покрыто более 99% всех клеток доски?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .