ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

По кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.

Вниз   Решение


На сторонах AC и BC треугольника ABC внешним образом построены квадраты ACA1A2 и BCB1B2. Докажите, что прямые  A1B, A2B2 и AB1 пересекаются в одной точке.

ВверхВниз   Решение


Ненулевые числа a и b таковы, что уравнение  a(x – a)² + b(x – b)² = 0  имеет единственное решение. Докажите, что  |a| = |b|.

ВверхВниз   Решение


Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 393]      



Задача 66509

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

Сеня не умеет писать некоторые буквы и всегда в них ошибается. В слове ТЕТРАЭДР он сделал бы пять ошибок, в слове ДОДЕКАЭДР – шесть, а в слове ИКОСАЭДР – семь. А сколько ошибок он сделает в слове ОКТАЭДР?

Прислать комментарий     Решение

Задача 66513

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?
Прислать комментарий     Решение


Задача 66514

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает.
Прислать комментарий     Решение


Задача 66519

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7

Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните.

Прислать комментарий     Решение


Задача 66525

Тема:   [ Ребусы ]
Сложность: 3
Классы: 5,6,7

В ребусе ЯЕМЗМЕЯ = 2020 замените каждую букву в левой части равенства цифрой или знаком арифметического действия (одинаковые буквы одинаково, разные – по-разному) так, чтобы получилось верное равенство. Достаточно привести один пример, пояснений не требуется.
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .