ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66674  (#9.1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Прислать комментарий     Решение


Задача 66675  (#9.2)

Темы:   [ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66676  (#9.3)

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Радикальная ось ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Автор: Белухов Н.

Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
Прислать комментарий     Решение


Задача 66677  (#9.4)

Темы:   [ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Mudgal A.

Дана окружность $\omega$ и ее хорда $BC$. Точка $A$ движется по большей из дуг $BC$. Пусть $H$ – ортоцентр треугольника $ABC$, $D$, $E$ – такие точки на сторонах $AB$, $AC$, что $H$ – середина отрезка $DE$, $O_A$ – центр описанной окружности треугольника $ADE$. Докажите, что все точки $O_A$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 66678  (#9.5)

Темы:   [ Вписанные четырехугольники ]
[ Связь величины угла с длиной дуги и хорды ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10,11

Четырехугольник $ABCD$ вписан в окружность. $BL$ и $CN$ – биссектрисы треугольников $ABD$ и $ACD$ соответственно. Окружности, описанные вокруг треугольников $ABL$ и $CDN$, пересекаются в точках $P$ и $Q$. Докажите, что прямая $PQ$ проходит через середину дуги $AD$, не содержащей точку $B$.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .