ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66721  (#1)

Темы:   [ Средняя линия треугольника ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$,  $BE \geqslant 2AM$.  Докажите, что треугольник $ABC$ тупоугольный.

Прислать комментарий     Решение

Задача 66722  (#2)

Темы:   [ Математическая логика (прочее) ]
[ Инварианты и полуинварианты (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10,11

На острове живут рыцари, лжецы и подпевалы; каждый знает про всех, кто из них кто. В ряд построили всех 2018 жителей острова и попросили каждого ответить "Да" или "Нет" на вопрос: "На острове рыцарей больше, чем лжецов?". Жители отвечали по очереди и так, что их слышали остальные. Рыцари отвечали правду, лжецы лгали. Каждый подпевала отвечал так же, как большинство ответивших до него, а если ответов "Да" и "Нет" было поровну, давал любой из этих ответов. Оказалось, что ответов "Да" было ровно 1009. Какое наибольшее число подпевал могло быть среди жителей острова?

Прислать комментарий     Решение

Задача 66723  (#3)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Ребусы ]
Сложность: 4-
Классы: 8,9,10,11

Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?

Прислать комментарий     Решение

Задача 66724  (#4)

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Доска 7×7 либо пустая, либо на ней лежит "по клеткам" невидимый корабль 2×2. Разрешается расположить в некоторых клетках доски по детектору, а потом одновременно их включить. Включённый детектор сигнализирует, если его клетка занята кораблём. Какого наименьшего числа детекторов хватит, чтобы по их показаниям гарантированно определить, есть ли на доске корабль, и если да, то какие клетки он занимает?

Прислать комментарий     Решение

Задача 66725  (#5)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .