Страница: 1
2 >> [Всего задач: 7]
Задача
66721
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$, $BE \geqslant 2AM$. Докажите, что треугольник $ABC$ тупоугольный.
Задача
66722
(#2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На острове живут рыцари, лжецы и подпевалы; каждый знает про всех, кто из них кто. В ряд построили всех 2018 жителей острова и попросили каждого ответить "Да" или "Нет" на вопрос: "На острове рыцарей больше, чем лжецов?". Жители отвечали по очереди и так, что их слышали остальные. Рыцари отвечали правду, лжецы лгали. Каждый подпевала отвечал так же, как большинство ответивших до него, а если ответов "Да" и "Нет" было поровну, давал любой из этих ответов. Оказалось, что ответов "Да" было ровно 1009. Какое наибольшее число подпевал могло быть среди жителей острова?
Задача
66723
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?
Задача
66724
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Доска 7×7 либо пустая, либо на ней лежит "по клеткам" невидимый корабль 2×2. Разрешается расположить в некоторых клетках доски по детектору, а потом одновременно их включить. Включённый детектор сигнализирует, если его клетка занята кораблём. Какого наименьшего числа детекторов хватит, чтобы по их показаниям гарантированно определить, есть ли на доске корабль, и если да, то какие клетки он занимает?
Задача
66725
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.
Страница: 1
2 >> [Всего задач: 7]