ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число.

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1703]      



Задача 66899

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 7,8,9,10

Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число.
Прислать комментарий     Решение


Задача 67004

Тема:   [ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9,10,11

Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции:

1) съедает какую-то котлету вместе со всеми сидящими на ней мухами;

2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух).

Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.

Прислать комментарий     Решение

Задача 67007

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10,11

Автор: Панов М.Ю.

Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.
Прислать комментарий     Решение


Задача 67013

Тема:   [ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность  $n - p$  также является простым числом.

Прислать комментарий     Решение

Задача 67038

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9

Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .