ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67007

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10,11

Автор: Панов М.Ю.

Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.
Прислать комментарий     Решение


Задача 67006

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Индукция (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10,11

Хозяйка испекла квадратный торт и отрезала от него несколько кусков. Первый разрез проведён параллельно стороне исходного квадрата от края до края. Следующий разрез проведён в оставшейся части от края до края перпендикулярно предыдущему разрезу, далее аналогично (сколько-то раз). Все отрезанные куски имеют равную площадь. Может ли оставшаяся часть торта быть квадратом?
Прислать комментарий     Решение


Задача 67008

Темы:   [ Теория алгоритмов (прочее) ]
[ Числовые таблицы и их свойства ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10,11

16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
Прислать комментарий     Решение


Задача 67009

Темы:   [ Десятичная система счисления ]
[ Дроби (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?
Прислать комментарий     Решение


Задача 67010

Темы:   [ Сферы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .