ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю.

Вниз   Решение


2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

ВверхВниз   Решение


Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.

ВверхВниз   Решение


На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?

ВверхВниз   Решение


Пусть O — точка пересечения диагоналей выпуклого четырехугольника ABCD. Докажите, что если радиусы вписанных окружностей треугольников ABO, BCO, CDO и DAO равны, то ABCD — ромб.

ВверхВниз   Решение


Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67087

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9,10,11

Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника.
Прислать комментарий     Решение


Задача 67088

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CD$. На отрезках $AD$ и $CD$ построены равносторонние треугольники $AED$ и $CFD$, так что точка $E$ лежит в той же полуплоскости относительно прямой $AB$, что и $C$, а точка $F$ лежит в той же полуплоскости относительно прямой $CD$, что и $B$. Прямая $EF$ пересекает катет $AC$ в точке $L$. Докажите, что $FL=CL+LD$.
Прислать комментарий     Решение


Задача 67089

Темы:   [ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67090

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства касательной ]
[ Угол между касательной и хордой ]
Сложность: 3
Классы: 8,9,10

Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$.
Прислать комментарий     Решение


Задача 67091

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Ивлев Ф.

Вписанная и вневписанная окружности треугольника $ABC$ касаются отрезка $AC$ в точках $P$ и $Q$ соответственно. Прямые $BP$ и $BQ$ вторично пересекают описанную окружность треугольника $ABC$ в точках $P'$ и $Q'$ соответственно. Докажите, что $PP' > QQ'$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .