ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно четыре отмеченных точки, а через каждую отмеченную точку проходят ровно четыре окружности?

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



Задача 67131  (#10.6)

Темы:   [ Вписанные и описанные окружности ]
[ Проективная геометрия (прочее) ]
Сложность: 5
Классы: 9,10,11

В остроугольном треугольнике $ABC$ точки $O$, $I$ – центры описанной и вписанной окружностей, $P$ – произвольная точка на отрезке $OI$, точки $P_A$, $P_B$ и $P_C$ – вторые точки пересечения прямых $PA$, $PB$ и $PC$ с окружностью $ABC$. Докажите. что биссектрисы углов $BP_AC$, $CP_BA$ и $AP_CB$ пересекаются в одной точке, лежащей на прямой $OI$.
Прислать комментарий     Решение


Задача 67132  (#10.7)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно четыре отмеченных точки, а через каждую отмеченную точку проходят ровно четыре окружности?
Прислать комментарий     Решение


Задача 67133  (#10.8)

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Точка Торричелли ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 4
Классы: 10,11

Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .