ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.

Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.

Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:

Уровень воды (см) 515253545
Количество островов25250

В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 381]      



Задача 65976

Темы:   [ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 6,7

Группа туристов делит печенье. Если они разделят поровну две одинаковые пачки, останется одно лишнее печенье. А если разделят поровну три такие же пачки, останется 13 лишних печений. Сколько туристов в группе?

Прислать комментарий     Решение

Задача 65978

Темы:   [ Взвешивания ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 6,7

У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

Прислать комментарий     Решение

Задача 65979

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 6,7

Дан квадрат ABCD. На продолжении диагонали AC за точку C отмечена такая точка K, что  BK = AC.  Найдите угол BKC.

Прислать комментарий     Решение

Задача 67173

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9

Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.

Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.

Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:

Уровень воды (см) 515253545
Количество островов25250

В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.
Прислать комментарий     Решение


Задача 67280

Темы:   [ Десятичные дроби (прочее) ]
[ Ребусы ]
Сложность: 3+
Классы: 6,7,8

В сумме

П,Я + Т,Ь + Д,Р + О,Б + Е,Й

все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .