ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?

Вниз   Решение


На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.

ВверхВниз   Решение


Ёжик может встретить в тумане либо Сивого Мерина, либо Сивую Кобылу, либо своего друга Медвежонка. Однажды Ёжику вышли навстречу все трое, но туман был густой, и Ёжик не видел, кто из них кто, а потому попросил представиться.

Тот, кто, с точки зрения Ёжика, был слева, сказал: «Рядом со мной Медвежонок».

Тот, кто стоял справа, заявил: «Это тебе сказала Сивая Кобыла».

Наконец, тот, кто был в центре, сообщил: «Слева от меня Сивый Мерин».

Определите, кто где стоял, если известно, что Сивый Мерин врёт всегда, Сивая Кобыла — иногда, а Медвежонок Ёжику не врёт никогда?

ВверхВниз   Решение


На турнире им. Ломоносова в институте МИМИНО были конкурсы по математике, физике, химии, биологии и бальным танцам. Когда турнир закончился, выяснилось, что на каждом конкурсе побывало нечётное количество школьников, и каждый школьник участвовал в нечётном количестве конкурсов. Чётное или нечётное число школьников пришло на турнир в МИМИНО?

ВверхВниз   Решение


На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?

ВверхВниз   Решение


На площади стояло несколько человек, каждый лицом к одному из 4 объектов, расположенных как на рисунке.

Каждый человек записал, какой объект находится перед ним, какой – слева, а какой – справа. В итоге «дом» было написано 5 раз, «фонтан» – 6 раз, «скамейка» – 7 раз, «дерево» – 9 раз. Сколько человек стояло на площади, и сколько из них стояло лицом к каждому из объектов?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 67270

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 3,4,5,6,7

Саша написал на доске несколько двузначных чисел в порядке возрастания, а после этого заменил одинаковые цифры на одинаковые буквы, а разные цифры – на разные буквы. У него получилось (в том же порядке)

АС, АР, ЯР, ЯК, ОК, ОМ, УМ, УЖ, ИЖ, ИА

Восстановите цифры.
Прислать комментарий     Решение

Задача 67271

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 5,6,7

На площади стояло несколько человек, каждый лицом к одному из 4 объектов, расположенных как на рисунке.

Каждый человек записал, какой объект находится перед ним, какой – слева, а какой – справа. В итоге «дом» было написано 5 раз, «фонтан» – 6 раз, «скамейка» – 7 раз, «дерево» – 9 раз. Сколько человек стояло на площади, и сколько из них стояло лицом к каждому из объектов?
Прислать комментарий     Решение

Задача 67272

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 6,7,8

Фигуру снизу можно разделить на трёх «дикобразов» (возможно, повёрнутых или перевёрнутых), изображённых на рисунке сверху. Отметьте дольки, в которых окажутся глаза этих дикобразов.

Прислать комментарий     Решение

Задача 67273

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 5,6,7,8

Назовём натуральное число $n$ интересным, если $n$ и $n+2023$ – палиндромы, то есть числа, одинаково читающееся слева направо и справа налево. Найдите наименьшее и наибольшее интересные числа.
Прислать комментарий     Решение


Задача 67274

Темы:   [ Кратчайший путь по поверхности ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9

Автор: Кноп К.А.

Город $N$ представляет собой клетчатый квадрат $9\times9$. За $10$ минут Таня может перейти из любой клетки в соседнюю по стороне. Ваня может открыть в любых двух клетках по станции метро – после этого можно будет перемещаться из одной такой клетки в другую за $10$ минут. Отметьте две клетки, в которых Ване нужно открыть метро, чтобы Таня могла добраться из любой клетки города в любую другую за $2$ часа.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .