Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]
Задача
67305
(#6)
|
|
Сложность: 4+ Классы: 7,8,9,10,11
|
Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня)
$$
\sqrt{(* + *)\cdot \sqrt{(* + *) \cdot \sqrt{ \ldots \sqrt{*+*}}}} .
$$
Могло ли значение полученного выражения оказаться целым числом?
Задача
67306
(#1)
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Действительные числа $a$, $b$, $c$, $d$ таковы, что
$$\frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}.$$
Докажите, что произведение каких-то двух чисел из $a$, $b$, $c$, $d$ равно произведению двух других.
Задача
67301
(#2)
|
|
Сложность: 3 Классы: 6,7,8,9
|
На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
Задача
67307
(#3)
|
|
Сложность: 3+ Классы: 6,7,8,9,10,11
|
Петя загадал положительную несократимую дробь $x = {m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?
Задача
67308
(#4)
|
|
Сложность: 4 Классы: 8,9,10,11
|
На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]