ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 67313  (#4)

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Четырехугольник (неравенства) ]
Сложность: 4-
Классы: 9,10,11

Автор: Шатунов Л.

Дан описанный четырёхугольник $ABCD$ с тупым углом $ABC$. Лучи $AB$ и $DC$ пересекаются в точке $P$, а лучи $DA$ и $CB$  – в точке $Q$. Докажите, что $|AD - CD| \geq |r_1 - r_2|$, где $r_1$ и $r_2$  – радиусы вписанных окружностей треугольников $PBC$ и $QAB$.
Прислать комментарий     Решение


Задача 67314  (#5)

Темы:   [ Кубические многочлены ]
[ Теорема Безу. Разложение на множители ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4+
Классы: 9,10,11

Будем называть натуральное число $N$ сильно кубическим, если существует такой приведённый кубический многочлен $f(x)$ с целыми коэффициентами, что $f(f(f(N))) = 0$, а $f(N)$ и $f(f(N))$ не равны 0. Верно ли, что все числа, большие $20^{24}$, сильно кубические?
Прислать комментарий     Решение


Задача 67309  (#6)

Темы:   [ Оценка + пример ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9,10,11

На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?
Прислать комментарий     Решение


Задача 67315  (#1)

Темы:   [ Взвешивания ]
[ Показательные функции и логарифмы (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?
Прислать комментарий     Решение


Задача 67316  (#2)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Перенос помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$  – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .