ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77983  (#1)

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 4+
Классы: 8,9,10

a, b, c и d — длины последовательных сторон четырёхугольника. Обозначим через S его площадь. Доказать, что

S$\displaystyle \le$$\displaystyle {\textstyle\frac{1}{4}}$(a + b)(c + d ).

Прислать комментарий     Решение

Задача 77984  (#2)

Тема:   [ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 9,10

1953 цифры выписаны по кругу. Известно, что если читать эти цифры по часовой стрелке, начиная с некоторого определённого места, то полученное 1953-значное число делится на 27. Докажите, что если начать читать по часовой стрелке с любого другого места, то полученное число также будет делиться на 27.

Прислать комментарий     Решение

Задача 77985  (#3)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 9

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

Прислать комментарий     Решение

Задача 77986  (#4)

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 9

В плоскости расположено n зубчатых колёс таким образом, что первое колесо сцеплено своими зубцами со вторым, второе – с третьим и т.д. Наконец, последнее колесо сцеплено с первым. Могут ли вращаться колёса такой системы?

Прислать комментарий     Решение

Задача 77987  (#5)

Тема:   [ Системы линейных уравнений ]
Сложность: 3-
Классы: 9

Решить систему
   x1 + 2x2 + 2x3 + ... + 2x100 = 1,
   x1 + 3x2 + 4x3 + ... + 4x100 = 2,
   x1 + 3x2 + 5x3 + ... + 6x100 = 3,
    ...
   x1 + 3x2 + 5x3 + ... + 199x100 = 100.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .