ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти все решения системы уравнений   x(1 – 2n) + y(1 – 2n–1) + z(1 – 2n–2) = 0,   где  n = 1, 2, 3, 4, ...

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78000  (#1)

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет развёртку полной поверхности куба, длина ребра которого равна 1.
Прислать комментарий     Решение


Задача 78001  (#2)

Темы:   [ Векторы сторон многоугольников ]
[ Поворот на $90^\circ$ ]
Сложность: 3-
Классы: 9

Из произвольной внутренней точки O выпуклого n-угольника опущены перпендикуляры на стороны (или их продолжения). На каждом перпендикуляре от точки O по направлению к стороне построен вектор, длина которого равна половине длины той стороны, на которую опущен перпендикуляр. Определить сумму построенных векторов.
Прислать комментарий     Решение


Задача 77997  (#3)

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Определить четырёхзначное число, если деление этого числа на однозначное производится по следующей схеме:

  × × × ×  ×  
  × ×      ×××  
      × ×    
      × ×    
             

а деление этого же числа на другое однозначное производится по такой схеме:

  × × × ×  ×  
    ×      ×××  
    × ×      
      ×      
      × ×    
      × ×    
             

Прислать комментарий     Решение

Задача 77998  (#4)

Темы:   [ Признаки делимости на 2 и 4 ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Существуют ли целые числа m и n, удовлетворяющие уравнению  m² + 1954 = n²?

Прислать комментарий     Решение

Задача 78002  (#5)

Тема:   [ Системы линейных уравнений ]
Сложность: 3+
Классы: 9

Найти все решения системы уравнений   x(1 – 2n) + y(1 – 2n–1) + z(1 – 2n–2) = 0,   где  n = 1, 2, 3, 4, ...

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .