ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 78045

Темы:   [ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.
Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

Прислать комментарий     Решение

Задача 78047

Темы:   [ Квадратный трехчлен (прочее) ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Трёхчлен  ax² + bx + c  при всех целых x является точным квадратом. Доказать, что тогда  ax² + bx + c = (dx + e)².

Прислать комментарий     Решение

Задача 78050

Тема:   [ Неравенство треугольника ]
Сложность: 5
Классы: 9

Неравенство

Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) > $\displaystyle {\textstyle\frac{1}{2}}$(ABc2 + BCa2 + CAb2),

где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0, C > 0. Можно ли из отрезков a, b, c составить треугольник?
Прислать комментарий     Решение

Задача 78059

Тема:   [ Теорема о группировке масс ]
Сложность: 5+
Классы: 9,10,11

Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что

$\displaystyle {\frac{A_0B_1}{B_1C_0}}$ = $\displaystyle {\frac{B_0C_1}{C_1A_0}}$ = $\displaystyle {\frac{C_0A_1}{A_1B_0}}$ = k,$\displaystyle {\frac{A_1B_2}{B_2C_1}}$ = $\displaystyle {\frac{B_1C_2}{C_2A_1}}$ = $\displaystyle {\frac{C_1A_2}{A_2B_1}}$ = $\displaystyle {\frac{1}{k^2}}$
и вообще,

Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.
Прислать комментарий     Решение

Задача 78048

Темы:   [ Окружности, вписанные в сегмент ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 6
Классы: 9,10

Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .