ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78047  (#1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Трёхчлен  ax² + bx + c  при всех целых x является точным квадратом. Доказать, что тогда  ax² + bx + c = (dx + e)².

Прислать комментарий     Решение

Задача 78048  (#2)

Темы:   [ Окружности, вписанные в сегмент ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 6
Классы: 9,10

Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Прислать комментарий     Решение


Задача 78049  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9

Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn.
  а) При  n = 9  найти нумерацию, при которой сумма номеров сторон для всех треугольников A1OA2, ..., AnOA1 одинакова.
  б) Доказать, что при  n = 10  такой нумерации осуществить нельзя.
Прислать комментарий     Решение


Задача 78050  (#4)

Тема:   [ Неравенство треугольника ]
Сложность: 5
Классы: 9

Неравенство

Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) > $\displaystyle {\textstyle\frac{1}{2}}$(ABc2 + BCa2 + CAb2),

где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0, C > 0. Можно ли из отрезков a, b, c составить треугольник?
Прислать комментарий     Решение

Задача 78051  (#5)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 9,10

Числа [a], [2a], ..., [Na] различны между собой, и числа $ \left[\vphantom{\frac{1}{a}}\right.$$ {\frac{1}{a}}$$ \left.\vphantom{\frac{1}{a}}\right]$, $ \left[\vphantom{\frac{2}{a}}\right.$$ {\frac{2}{a}}$$ \left.\vphantom{\frac{2}{a}}\right]$, ..., $ \left[\vphantom{\frac{M}{a}}\right.$$ {\frac{M}{a}}$$ \left.\vphantom{\frac{M}{a}}\right]$ тоже различны между собой. Найти все такие a.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .