ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Бухгалтер конторы "Рога и копыта" Балаганов составил штатное расписание – таблицу, в которой указаны все должности, количество сотрудников и их оклады (месячные зарплаты). Кроме того, указан средний оклад по конторе. Некоторые места Паниковский случайно заляпал вареньем, и стало невозможно прочитать, что там написано. ![]() ![]() Найдите ключ к "тарабарской грамоте" — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"' — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти". ![]() ![]() ![]() Неравенство
Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) >
где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0,
C > 0. Можно ли из отрезков a, b, c составить треугольник?
![]() ![]() |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
В турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший.
Трёхчлен ax² + bx + c при всех целых x является точным квадратом. Доказать, что тогда ax² + bx + c = (dx + e)².
Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) >
где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0,
C > 0. Можно ли из отрезков a, b, c составить треугольник?
и вообще,
Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |