ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 78221  (#1)

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9,10

Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна.
Прислать комментарий     Решение


Задача 78222  (#2)

Темы:   [ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
Прислать комментарий     Решение


Задача 78223  (#3)

Темы:   [ Невыпуклые многоугольники ]
[ Принцип Дирихле (углы и длины) ]
[ Композиции поворотов ]
Сложность: 4+
Классы: 8,9,10

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
Прислать комментарий     Решение


Задача 78224  (#4)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

В каком-то году некоторое число ни в одном месяце не было воскресеньем. Определить это число.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .