ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 22]      



Задача 78835

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 9,10

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.
Прислать комментарий     Решение


Задача 78821

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ ГМТ с ненулевой площадью ]
[ Невыпуклые многоугольники ]
Сложность: 5+
Классы: 8,9,10,11

Озеро имеет форму невыпуклого n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого m-угольника, где mn.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .