ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол A равен 120°, точка D лежит на биссектрисе угла A, и  AD = AB + AC.  Докажите, что треугольник DBC – равносторонний.

Вниз   Решение


Сколько двоек будет в разложении на простые множители числа 1984! ?

ВверхВниз   Решение


а) Можно ли занумеровать рёбра куба натуральными числами от 1 до 12 так, чтобы для каждой вершины куба сумма номеров рёбер, которые в ней сходятся, была одинаковой?

б) Аналогичный вопрос, если расставлять по рёбрам куба числа –6, –5, –4, –3, –2, –1, 1, 2, 3, 4, 5, 6.

ВверхВниз   Решение


n бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр.

ВверхВниз   Решение


В ряд выписаны в порядке возрастания числа, делящиеся на 9: 9, 18, 27, 36, ... . Под каждым числом этого ряда записана его сумма цифр.
  а) На каком месте во втором ряду впервые встретится число 81?
  б) Что встретится раньше: четыре раза подряд число 27 или один раз число 36?

ВверхВниз   Решение


Можно ли разлить 50 л бензина по трём бакам так, чтобы в первом баке было на 10 л больше, чем во втором, а после переливания 26 л из первого бака в третий в третьем баке стало бы столько же бензина, сколько во втором?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]      



Задача 67326

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

Среди своих старых рисунков Катя нашла несколько картинок с разноцветным зонтиком. Катя помнит, что рисовала один и тот же зонтик (вид сверху), только повёрнутый по-разному. К сожалению, от времени краска частично выцвела.

Помогите Кате восстановить, в каком порядке располагались цвета на зонтике, если идти от 1 (розового) по часовой стрелке.
Прислать комментарий     Решение


Задача 67327

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества.
Прислать комментарий     Решение


Задача 67328

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?
Прислать комментарий     Решение


Задача 88245

Темы:   [ Линейные неравенства и системы неравенств ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7

Можно ли разлить 50 л бензина по трём бакам так, чтобы в первом баке было на 10 л больше, чем во втором, а после переливания 26 л из первого бака в третий в третьем баке стало бы столько же бензина, сколько во втором?

Прислать комментарий     Решение

Задача 97977

Темы:   [ Задачи на смеси и концентрации ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 6,7,8

Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .