ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятие:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число. Можно ли получить ряд 100, 99, 98, ..., 2, 1? Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 181]
Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?
Можно ли получить ряд 100, 99, 98, ..., 2, 1?
Доказать, что при любом целом положительном n сумма больше ½.
На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.
Докажите, что в десятичной записи чисел 19902003 и 19902003 + 22003 одинаковое число цифр.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 181] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|