ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число.
Можно ли получить ряд 100, 99, 98, ..., 2, 1?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 181]      



Задача 88311  (#10.7)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8

Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?

Прислать комментарий     Решение

Задача 88312  (#10.8)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число.
Можно ли получить ряд 100, 99, 98, ..., 2, 1?

Прислать комментарий     Решение

Задача 76502  (#11.1)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Доказать, что при любом целом положительном n сумма     больше ½.

Прислать комментарий     Решение

Задача 30307  (#11.2)

Темы:   [ Четность и нечетность ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 6,7,8

На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

Прислать комментарий     Решение

Задача 88315  (#11.3)

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Докажите, что в десятичной записи чисел 19902003 и  19902003 + 22003  одинаковое число цифр.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .