ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1703]      



Задача 97788

Темы:   [ Произведения и факториалы ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Доказать, что уравнение  mn! = k!  имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.

Прислать комментарий     Решение

Задача 97801

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.

Прислать комментарий     Решение

Задача 97810

Темы:   [ НОД и НОК. Взаимная простота ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.

Прислать комментарий     Решение

Задача 97839

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если  OD = OE,  то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.

Прислать комментарий     Решение

Задача 97840

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .