ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света? Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]
Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и
вынимать яблоки из корзин.
В клетки шахматной доски записаны числа от 1 до 64 (первая горизонталь нумеруется слева направо числами от 1 до 8, вторая от 9 до 16 и т. д.). Перед некоторыми числами поставлены плюсы, перед остальными – минусы, так что в каждой горизонтали и в каждой вертикали по четыре плюса и по четыре минуса. Докажите, что сумма всех чисел равна 0.
Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|