ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В трапеции ABCD на боковой стороне AB дана точка K. Через точку A провели прямую l, параллельную прямой KC, а через точку B – прямую m, параллельную прямой KD. Докажите, что точка пересечения прямых l и m лежит на стороне CD. ![]() ![]() а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое? б) Докажите, что если они оба целые, то a = b = c. ![]() ![]() ![]() Отмечено 100 точек – N вершин выпуклого N-угольника и 100 – N точек внутри этого N-угольника. Точки как-то обозначены, независимо от того, какие являются вершинами N-угольника, а какие лежат внутри. Известно, что никакие три точки не лежат на одной прямой, а никакие четыре – на двух параллельных прямых. Разрешается задавать вопросы типа: чему равна площадь треугольника XYZ (X, Y, Z – из числа отмеченных точек). Докажите, что 300 вопросов достаточно, чтобы выяснить, какие точки являются вершинами N-угольника, и чтобы найти его площадь. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 6]
Можно ли так выбрать шар, треугольную пирамиду и плоскость, чтобы всякая плоскость, параллельная выбранной, пересекала шар и пирамиду по фигурам равной площади?
Рассмотрим все возможные наборы чисел из множества {1, 2, 3, ..., n}, не содержащие двух соседних чисел.
Внутри круга радиуса R взята точка A. Через неё проведены две перпендикулярные прямые. Потом прямые повернули на угол φ относительно точки A. Хорды, высекаемые окружностью из этих прямых, замели при повороте фигуру, имеющую форму креста с центром в точке A. Найдите площадь креста.
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
Отмечено 100 точек – N вершин выпуклого N-угольника и 100 – N точек внутри этого N-угольника. Точки как-то обозначены, независимо от того, какие являются вершинами N-угольника, а какие лежат внутри. Известно, что никакие три точки не лежат на одной прямой, а никакие четыре – на двух параллельных прямых. Разрешается задавать вопросы типа: чему равна площадь треугольника XYZ (X, Y, Z – из числа отмеченных точек). Докажите, что 300 вопросов достаточно, чтобы выяснить, какие точки являются вершинами N-угольника, и чтобы найти его площадь.
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |